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OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

• Describe and apply two graph traversal techniques, namely, Depth-First 
Search (DFS) and Breadth-First Search (BFS), as well as three tree traversal 
techniques. Namely, inorder, preoder and postorder traversal

• Apply DFS and BFS to solve some standard graph problems, including 
connectivity, and special cases of shortest paths and minimum spanning 
trees

• Apply DFS to check for biconnectivity and identify articulation points

• Use the concepts and insights gained in this lecture to develop new graph 
algorithms for some interesting problems
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OUTLINE

By the end of this lecture, you will be able to:

• Definition of graph traversal

• Tree traversal techniques and some quick applications

• Depth-first search: technique, implementation, and 
applications

• Breadth-first search: technique, implementation, and 
applications

• Biconnectivity application of depth-first search
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INTRODUCTION
• A graph search (or traversal) technique visits all the nodes in an input graph in a 

systematic fashion
• The nodes are visited in some particular order
• No node is visited multiple times (but it can be crossed multiple times), and no node is left 

out

• Two standard graph search techniques have been widely used:
• Depth-First Search (DFS)
• Breadth-First Search (BFS) 

• In the case of rooted binary trees, 3 traversal techniques are widely used:
(1) Inorder Traversal (2) Preorder Traversal (3) Postorder Traversal 

• The tree traversal techniques will be reviewed very briefly

• BFS and DFS will be covered in detail, and applications given
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TREE TRAVERSAL TECHNIQUES
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Procedure inorder(input: T)
begin

if T = null then: return; endif

// traverse the left subtree 
// recursively
inorder(T.left); 

// visit/process the root  
visit(T);

// traverse the right subtree 
// recursively
inorder(T.right); 

end
// Also called LNR traversal

Time: T(n) = O(n)
because every node in the tree is 
processed/crossed just once

Procedure preorder(input: T)
begin

if T = null then: return; endif

// visit/process the root  
visit(T);

// traverse the left subtree 
// recursively
preorder(T.left); 

// traverse the right subtree 
// recursively
preorder(T.right); 

end
// Also called NLR traversal

Time: T(n) = O(n)
because every node in the tree is 
processed/crossed just once

Procedure postorder (input: T)
begin

if T = null then: return; endif

// traverse the left subtree 
// recursively
postorder(T.left); 

// traverse the right subtree 
// recursively
postorder(T.right); 

// visit/process the root  
visit(T);

end
// Also called LRN traversal

Time: T(n) = O(n)
because every node in the tree is 
processed/crossed just once



ILLUSTRATION OF THE THREE
TREE TRAVERSAL TECHNIQUES

• Inorder:     4, 2, 11, 8, 12, 5, 9, 1, 6, 3, 7, 13 10

• Preorder:  1, 2, 4, 5, 8, 11, 12, 9, 3, 6, 7, 10, 13

• Postorder: 4, 11, 12, 8, 9, 8, 2, 6, 13, 10, 7, 3, 1
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APPLICATIONS OF TREE TRAVERSAL 
TECHNIQUES

• Compiling (and evaluating) arithmetic expressions:

• Infix notation: inorder traversal 

• Prefix notation: preorder traversal

• Postfix notation: postorder traversal 

• We will not say more about the compiler applications, but you can 
read about them by following the links if you wish

• Sorting a Binary Search Tree

• If apply inorder traversal on a BST, the data of the tree get sorted

• Thus, sorting a BST takes O(n) time
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https://en.wikipedia.org/wiki/Infix_notation
https://en.wikipedia.org/wiki/Polish_notation
https://en.wikipedia.org/wiki/Reverse_Polish_notation


LESSONS LEARNED SO FAR

• Tree traversal techniques are simple, recursive, and linear in 
time

• Sorting a BST is done by applying inorder traversal on it
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EXERCISES

• Can two different binary trees yield the same inorder traversal 
sequence? The same preorder traversal sequence? The same 
postorder traversal sequence? Prove your answer

• Write a recursive algorithm that takes as input of the postorder
traversal sequence and the in-order traversal sequence of a binary 
tree, and derives as output the actual binary tree
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DEPTH-FIRST SEARCH (DFS)

DFS follows these steps/rules:

1. Select an unvisited node s, visit it, and treat as the current node

2. Find an unvisited neighbor of the current node, visit it, and 
make it the new current node;

3. If the current node has no unvisited neighbors, backtrack to its 
parent, and make that the new current node;

4. Repeat the above two steps until no more nodes can be visited;

5. If there are still unvisited nodes, repeat from step 1;
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DFS ILLUSTRATION 
• Graph G: • DFS(G,1): 
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DFS IMPLEMENTATION
-- WHY --

• Remark: whenever we got stuck, we backtracked to where we 
came from. How? 

• Using our human eyes!

• Algorithms don’t have eyes (usually)

• Observe that the last node you came from is the first node you go 
back to

• This suggests a stack to remember the order in which to 
backtrack to nodes

CS 6212 Design and Analysis of Algorithms                                                                                    Graph Traversal Techniques

12



DFS IMPLEMENTATION
-- ILLUSTRATION: USING STACKS --

• Graph G: • DFS(G,1): 
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DFS IMPLEMENTATION
-- CODE: USING STACKS--
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Procedure DFS(input: graph G)
begin

Stack S;
int x, y, v; 
while (G has an unvisited node) do

// pick one of them; break tie by picking min
v := an unvisited node; // a starting node
visit(v); push(v,S);
while (S is not empty) do

x := top(S);  // current node
if (x has an unvisited neighbor y) then

visit(y); // break tie, e.g., pick min
push(y,S);

else
pop(S); // backtrack to previous node

endif
endwhile

endwhile
end

Time complexity:
• Every node is visited once, but 

could be crossed multiple times 
(by backtracking to it multiple 
times). 

• So the number of nodes is not a 
good indicator of time

• But ever edge in G is “traversed” 
at most twice: 

• One time to go from a node to 
a “child”

• And another time to 
backtrack from a child to a 
parent

• Note that once you backtracked 
from a node, you never come 
back to it

• Therefore, the time is O(|E|+n)



OBSERVATIONS
-- DFS ON CONNECTED GRAPHS: DFS TREE --

• When you do a DFS on a graph,  and you draw a copy of a node 
when you visit it, and  you draw an edge to a every new node you 
visit from your current node, you end up with a tree

• That tree is called a depth-first search tree (or simply DFT)

• If the graph G is connected (i.e., there is at least one path between 
every pair of nodes), then: 

• Doing a DFS on G from any arbitrary starting node will visit all the 
nodes in G

• The DFT tree is a spanning tree of G
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DFS ON CONNECTED GRAPHS
-- YIELDING A DFT --

• Graph G: • DFS(G,1): 
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OBSERVATIONS
-- DFS ON DISCONNECTED GRAPHS: DFS FOREST --

• If G is not connected, it is made up of “islands”, called 

connected components (CC) 
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DFS APPLICATIONS
-- CONNECTIVITY --
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Procedure DFS(input: graph G)
begin

Stack S;
int x, y, v; 
int count=0; // number of connected components
while (G has an unvisited node) do

v := an unvisited node; // a starting node
visit(v);    push(v,S);
while (S is not empty) do

x := top(S);  // current node
if (x has an unvisited neighbor y) then

visit(y); push(y,S);
else

pop(S); // backtrack to previous node
endif

endwhile
count++;

endwhile
end

• This traverses one full 
connected component 

• If we keep track of the 
nodes visited in this 
round, we’ll have the 
entire CC

Iterates as many times as 
there are CCs in G

At the end, “count” will have 
the number of CC’s in G

• If count==1, then G is connected
• If count> 1, then G is disconnected



WHY IS CONNECTIVITY CHECKING IMPORTANT

• Ability to communicate with everyone
• Our world is full of networks: computer networks, communication networks, 

etc.
• Nodes in such networks communicate with one another very often
• If the network is connected, that means every node can communicate with 

other nodes
• Otherwise, some nodes are disconnected from other nodes

• Many graph applications work on connected graphs/components
• Therefore, in those applications, the first step is to check if the input graph 

is connected
• If G is not connected, the connected components are found first, and the 

application is then run on each CC separately
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OTHER APPLICATIONS OF DFS

• Checking if an input graph G is a tree. How?

• Identification of which edges can be deleted while keeping the 
network connected (e.g., for cost saving measures)

• Minimum Spanning Trees when all edges have the same weight
• If all edge weights are equal to 𝑤𝑤, then all spanning trees are of 

weight (𝑛𝑛 − 1)𝑤𝑤, and so all of them are MSTs

• The DFT is then a MST, and can be found in O(|E|+𝑛𝑛) time, which can 
be much less in the greedy 𝑂𝑂( 𝐸𝐸 log |𝐸𝐸|) time

• Finding single points of failure, i.e., individual nodes/edges 
whose removal disconnect the graph (more on that later)

CS 6212 Design and Analysis of Algorithms                                                                                    Graph Traversal Techniques

20



LESSONS LEARNED SO FAR

• Tree traversal techniques are simple, recursive, and linear in 
time

• Sorting a BST is done by applying inorder traversal on it

• Depth-first search is a generic graph traversal technique that 
takes linear time (i.e., O(|E|+|V|)), and is easily 
implemented using stacks

• DFS has many applications, especially in connectivity, and 
yields a faster algorithm for the MST problem when the edges 
have the same weight
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EXERCISES

• Give a recursive version of the DFS algorithm, which does not 
explicitly use a stack
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BREADTH-FIRST SEARCH (BFS)

DFS follows these steps/rules: 
1. Select an unvisited node s, visit it, and treat as the current node (and 

the root of a BSF tree). Its level is called the current level.

2. From each node x in the current level, in the order in which the level 
nodes were visited, visit all the unvisited neighbors of x. The newly 
visited nodes from this level form a new level that becomes the next 
current level.

3. Repeat the previous step until no more nodes can be visited.

4. If there are still unvisited nodes, repeat from Step 1. 
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Better to illustrate on an example, next



BFS ILLUSTRATION 
• Graph G: • BFS(G,1): 
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BFS ON DISCONNECTED GRAPHS
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OBSERVATIONS
-- BFS: BFS TREE OR FOREST--

• Like in DFS, when you do a BFS on a graph, 

• you get a tree if the graph is connected, called Breadth-first search
tree (or simply BFT)

• If the graph is disconnected, you get a forest (one tree per 
connected component), called Breadth-first search forest
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BFS IMPLEMENTATION
-- WHY --

• Remarks: 

• The nodes in each “current” level are “expanded” from left to right, i.e., in 
the order in which they were initially visited: first-visit, first-expand

• Whenever a level is completed, we moved to the next level

• How did we follow the right order, and how did we find the next level?

• Again, using our human eyes!

• And again, algorithms don’t have eyes (usually)

• The first-visit, first-expand observation above suggests a queue to 
remember the order in which to expand the (already visited) 
nodes
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Expand a node x: visit its unvisited neighbors



BFS IMPLEMENTATION
-- ILLUSTRATION: USING QUEUES--

• Graph G: • BFS(G,1): 
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BFS IMPLEMENTATION
-- CODE: USING QUEUES-
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Procedure BFS(input: graph G)
begin

Queue Q;
int x, y, v; 
while (G has an unvisited node) do

// pick one of them; break tie by picking min
v := an unvisited node; // a starting node
visit(v); enqueuer(v,Q);
while (Q is not empty) do

x := dequeue(Q);  // current node
for each unvisited neighbor y of do

visit(y); // visit neighbors as sorted 
enqueue(y,W);

endfor
endwhile

endwhile
end

Time complexity:
• Every node is visited once, but 

could be “touched” multiple times 
(to check if visited). 

• So the number of nodes is not a 
good indicator of time

• But ever edge (x,y) in G is 
“traversed” twice: 

• Once to visit y from x
• Another time from y to see if 

x has been visited
• Once x is expanded, edge from x 

to y is never crossed, b/c x is “left 
behind”

• Also once y is expanded, edge 
from y to x is never crossed

• Therefore, the time is O(|E|+n)



Procedure BFS(input: graph G)
begin

Queue Q;
int x, y, v; 
int count=0; // number of connected components
while (G has an unvisited node) do

// pick one of them; break tie by picking min
v := an unvisited node; // a starting node
visit(v); enqueuer(v,Q);
while (Q is not empty) do

x := dequeue(Q);  // current node
for each unvisited neighbor y of do

visit(y); // visit neighbors as sorted 
enqueue(y,Q);

endfor
endwhile
count++;

endwhile
end

DFS APPLICATIONS
-- CONNECTIVITY (MUCH LIKE DFS) --
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• This traverses one full 
connected component 

• If we keep track of the 
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round, we’ll have the 
entire CC

Iterates as many times as 
there are CCs in G

At the end, “count” will have 
the number of CC’s in G

• If count==1, then G is connected
• If count> 1, then G is disconnected



OTHER APPLICATIONS OF BFS

• Checking if an input graph G is a tree. How?

• Identification of which edges can be deleted while keeping the 
network connected (e.g., for cost saving measures)

• MSTs when all edges have the same weight: a BFT is a MST, and 
can be found in O(|E|+𝑛𝑛) time, which is < the greedy 𝑂𝑂( 𝐸𝐸 log |𝐸𝐸|)

• Reducing bandwidths in sparse matrices, etc. (beyond our scope)
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OTHER APPLICATIONS OF BFS
-- SHORTEST PATHS WHEN ALL EDGES HAVE SAME WEIGHT (1) --

• Assume all the edges have the same weight (say 1) in a graph G

• Theorem: The BFS paths from the root to all the nodes are shortest paths 

• Proof: 
• Label the levels of the BFT 0, 1, 2, …, top to bottom. 

• Prove by induction the level 𝑙𝑙 that all nodes in level 𝑙𝑙 are of distance 𝑙𝑙 from the root, 
and that all nodes of distance 𝑙𝑙 from the root are in level 𝑙𝑙. 

• The rest of the proof is an exercise
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SHORTEST PATHS FROM ROOT IN BFT
• Graph G: • BFS(G,1): 
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OTHER APPLICATIONS OF BFS
-- SHORTEST PATHS WHEN ALL EDGES HAVE SAME WEIGHT (2) --

• Assume all the edges have the same weight (say 1) in a graph G

• Theorem: The BFS paths from the root to all the nodes are shortest paths 

• Proof: 
• Label the levels of the BFT 0, 1, 2, …, top to bottom. 

• Prove by induction the level 𝑙𝑙 that all nodes in level 𝑙𝑙 are of distance 𝑙𝑙 from the root, 
and that all nodes of distance 𝑙𝑙 from the root are in level 𝑙𝑙. 

• The rest of the proof is an exercise

• Time to do since-source shortest paths (when edges have same weight): 
O(|E|), which is faster than the greedy 𝑂𝑂(𝑛𝑛2) time

• Time to do all-pairs shortest paths (when edges have same weight), by 
calling BFS n times, one time from each node: O(𝑛𝑛|𝐸𝐸|) < 𝑂𝑂(𝑛𝑛3) DP time
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LESSONS LEARNED SO FAR

• Tree traversal techniques are simple, recursive, and linear in time

• Sorting a BST is done by applying inorder traversal on it

• Depth-First Search (DFS) and Breadth-First Search (BFS) are 
generic graph traversal techniques that take linear time (i.e., 
O(|E|+|V|)), and are easily implemented using stacks and 
queues, respectively

• DFS and BFS have many applications, especially in connectivity, 
and yield faster algorithms for the MST problem when the edges 
have the same weight

• BFS yields faster algorithms for the shortest paths problems when 
the edges have the same weight
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BICONNECTIVITY
-- A MAJOR APPLICATION OF DFS --

• Definition: A node in a connected graph is called an 
articulation point (A.P.)  if the deletion of that node (and all 
the edges incident to it) disconnects the graph.

• Definition: A connected graph is called biconnected if it has 
no articulation points. That is, the deletion of any single node 
leaves the graph connected.

• In the case of networks, an articulation point is referred to as a 
single point of failure.
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ILLUSTRATION OF ARTICULATION POINTS (1)
• Graph G:

• G is not biconnected

• Nodes 2, 3, and 13 are articulation points

• Observe what happens if we delete node 2: 
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• Observe what happens if we delete node 3: 

ILLUSTRATION OF ARTICULATION POINTS (3)
• Graph G:
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ILLUSTRATION OF NON-ARTICULATION POINTS 
• Graph G:

• G is not biconnected

• Nodes 2, 3, and 13 are articulation points
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BICONNECTIVITY
-- AN EXAMPLE OF A BICONNECTED GRAPH --

• The following graph is biconnected: it has no A.P.’s

• Note that by adding some edges

(the red ones) to the 

previous graph, it became

biconnected
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A BICONNECTIVITY THEOREM
• Definition:  In a graph G, two paths between a pair of 

nodes x and y are said to be disjoint if they don’t 
have any nodes in common except the end-points x 
and y

• Theorem: A graph G is biconnected if and only if 
between every pair of nodes x and y in G there is at 
least two disjoint paths

• Proof: Will not be covered in this course.

• The black and green paths  [2 → 11 → 14] and [1 →
10 → 13 → 14] between 2 and 14 are disjoint

• The red and brown paths [5 → 4 → 3 → 8 → 8] and [5 
→ 6 → 3 → 7→ 9] between 5 and 9 are not disjoint 
(they share  node 3)CS 6212 Design and Analysis of Algorithms                                                                                    
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THE BICONNECTIVITY PROBLEM

• Input: a connected graph G

• Output: Whether or not the graph G is biconnected and, if not 
biconnected, find all the articulation points

• Task: Write an algorithm for solving this problem, using a 
graph traversal technique
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BICONNECTIVITY
-- DFS: NEW LAYOUT OF THE GRAPH --

• DFS on a connected graph G yields a DFS tree whose edges 
are from the graph. 

• Draw those edges as solid edges. 

• Add the remaining edges of the graph as dashed edges in the 
tree.
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DFS-LAYOUT OF A GRAPH
• Graph G: • DFS-layout
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OBSERVATIONS ABOUT THE DASHED EDGES
• Graph G: • DFS-layout
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BACKWARD EDGES IN DFS
-- A THEOREM --

• Theorem: Each dashed edge in a DFS layout goes from 
a descendant to an ancestor. 

• Proof: The proof is by contradiction.
• Take a graph G and do a DFS on it 

• Let (x,y) be a dashed edge between nodes that are not 
ancestor-descendant, that is, x and y are in separate 
subtrees of the DFS tree. Assume x was visited before y.

• Let t be the time DFS backtracks from x: no unvisited 
neighbors of x remain, and DFS will not return to x again

• Since x is visited before y and y is not a descendant of x, 
y has not been visited at time t.

• But since y is a neighbor of x and y is not visited at time t, 
y would have to be visited from x before the algorithm 
backtracks from x. 

• That would make y a descendant of x. Contradiction.

• Therefore, no such cross edge (x,y) can exist in a DFS 
tree. Q.E.D.
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LESSONS LEARNED SO FAR

• Tree traversal techniques are simple, recursive, and linear in time

• Sorting a BST is done by applying inorder traversal on it

• Depth-First Search (DFS) and Breadth-First Search (BFS) are generic graph 
traversal techniques that take linear time (i.e., O(|E|+|V|)), and are easily 
implemented using stacks and queues, respectively

• DFS and BFS have many applications, especially in connectivity, and yield 
faster algorithms for the MST problem when the edges have the same weight

• BFS yields faster algorithms for the shortest paths problems when the edges 
have the same weight

• DFS results in a new layout of graphs (tree edges and back edges) that is more 
illuminating about the underlying structure of the graph than any random 
layout
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OBSERVATIONS ABOUT THE ROOT OF 
THE DFT

• Theorem: If the root has more than one 
child, then the root is an articulation point. 
But if the root has a single child, it is not an
articulation point.

• Proof: 
• Case 1: the root has multiple children

• the removal of the root makes the subtrees 
of that root disconnected from one another 
since there are no cross dashed edges 
between them. (see top half of figure )

• Case 2: the root has one child
• its removal leaves the remaining n-1 nodes 

connected by at least the (only) subtree of 
the root.        Q.E.D.
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CAN THIS LEAD TO AN ALGORITHM FOR 
FINDING ALL AP’S?

• The previous theorem suggests a first algorithm for 
identifying articulation points: 

• For each node x in G, do a DFS from x, and check if x more than 
one child. If so, x is an a.p.

• This algorithm, however, takes 𝑶𝑶(𝒏𝒏 |𝑬𝑬|) time (b/c it calls DFS n 
times) 

• Can we do better? 

• A better algorithm will be designed that takes only O(|E|) 
time, performing only one DFS instead of n DFSs
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TESTABLE CRITERION FOR A NON-ROOT TO BE A.P.

• Notation: Let 𝒘𝒘-tree denote the 
subtree rooted at w in a DFT

• Necessary and sufficient condition 
for a non-root to be an A.P.:

• A non-root node x is an 
articulation point if and only if x 
has a subtree (w-tree) such that 
every back edge that originates 
from that substree ends at x or at 
w or at a descendant of w

• Why? Observe in the figure how when x 
is removed, the w-tree is diconnected
from the rest of the graph 
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REFINING THE CRITERION FOR 
A NON-ROOT TO BE A.P.

• Let 𝐿𝐿[𝑤𝑤] ≝ the highest node reachable (from the 𝑤𝑤-tree by a 

back edge) or (from 𝑤𝑤 by a null path)

• The AP criterion on the previous slide “x has a subtree (w-tree) 
such that every back edge that originates from that substree
ends at x or at w or at a descendant of w”

becomes:

“x is an articulation point iff x has a child 𝑤𝑤 where L[𝑤𝑤] is x or w or a 
descendant of w”

• We will turn this “visual/geometric” criterion into a numerical criterion
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QUANTIFYING THE AP CRITERION 
-- RELABELING THE NODES TO CAPTURE GEOMETRY (1) --

• The nodes of the graph will be relabeled so that the new 
labels carry meaningful information. 

• Indeed, each node 𝑖𝑖 will have two new labels: 𝐷𝐷𝐷𝐷𝐷𝐷[𝑖𝑖] and 𝐿𝐿[𝑖𝑖].

• Let 𝑫𝑫𝑫𝑫𝑫𝑫[𝒊𝒊] ≝ the time at which 𝒊𝒊 is visited in DFS. Thus, the 
1st node visited (the root) has its DFN = 1. The 2nd node visited 
has a DFN = 2, etc.
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ILLUSTRATION OF DFN RELABELING 
• Graph G:
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QUANTIFYING THE AP CRITERION 
-- RELABELING THE NODES TO CAPTURE GEOMETRY (2) --

• Recall 𝐿𝐿[𝑤𝑤] ≝ the highest node reachable (from the 𝑤𝑤-tree by a 

back edge) or (from 𝑤𝑤 by a null path)

• Express 𝑳𝑳[𝒘𝒘] in terms of DFN:

𝑳𝑳[𝒘𝒘] ≝ the DFN of [the highest node reachable (from the w-tree 

by a back edge) or (from w by a null path)]

• The AP criterion “x is an articulation point iff x has a child 𝑤𝑤 where 
L[𝑤𝑤] is x or 𝑤𝑤 or a descendant of 𝑤𝑤” becomes: 

“x is an articulation point iff x has a child 𝑤𝑤 where L[𝑤𝑤] is DFN[x] or 
DFN[𝑤𝑤] or DFN[a descendant of 𝑤𝑤]”
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QUANTIFYING THE AP CRITERION 
-- IN TERMS OF L AND DFN --

• Observe that 

• the ancestors of 𝑤𝑤 have DFN’s ≤ DFN[𝑤𝑤]
• The descendants of w have DFN’s ≥ DFN[𝑤𝑤]

• The AP criterion becomes “x is an articulation point iff x has a 
child 𝑤𝑤 where L[𝑤𝑤] is DFN[x] or DFN[w] or DFN[a descendant of 
w]” becomes

x is an articulation point iff x has a child 𝑤𝑤 where 𝐿𝐿 𝑤𝑤 ≥ 𝐷𝐷𝐷𝐷𝐷𝐷[𝑥𝑥]

• Therefore, if we can compute the DFN’s and L’s of all the nodes, we can 
apply that criterion at every node x to identify the articulation points
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HOW TO COMPUTE L[W]
-- USING THE NOTION OF SPECIAL PATHS (1) --

• For convenience, we’ll define the notion of “special path”

• A special path from a node 𝑤𝑤 is 

• the null path from 𝑤𝑤 to itself, or

• A path that goes from 𝑤𝑤 downward zero or more 

tree edges, and ends with one upward back edge

• Therefore, every node reachable from the 𝑤𝑤-tree with a back edge 
is reachable from w with a special path

• This observation will help us state L[𝑤𝑤] in terms of special paths
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ILLUSTRATION OF SPECIAL PATHS
• Special paths from node 11:

• Null path 11

• Path 11 → 2 (one upward back edge)

• 11 → 13 → 12 →10: it went down  tree 
edges from 11 to 13 to 12, and finally 
up a back edge to 10

• 11 → 13→ 14→11

• 11 →13 →15→16→13

• The highest node reachable by any of 
those special paths from 11 is node 2

• DFN[2]=2 (see  a couple of slides ago)

• Therefore, L[11]=2

• DFS-layout
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HOW TO COMPUTE L[W]
-- USING THE NOTION OF SPECIAL PATHS (2) --

1. Recall 𝐿𝐿[𝑤𝑤] ≝ the DFN of the highest node reachable from the 𝑤𝑤 -tree 
by a back edge or from w by a null path

2. It can be easily seen that 

𝑳𝑳 𝒘𝒘 = the DFN of the highest node reachable from 𝒘𝒘 by a special path

3. Observe that the highest node reachable from 𝑤𝑤 by a special path is 
either w itself or a proper ancestor of 𝑤𝑤. Either way, it is an ancestor of 
𝑤𝑤.

4. Observe also that in the set of ancestors of 𝑤𝑤, the higher 
(geometrically) an ancestor is, the smaller its DFN

5. By the last 3 points, we conclude that 

𝑳𝑳 𝒘𝒘 = min{DFN[x] | x is reachable from 𝒘𝒘 by a special path}
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HOW TO COMPUTE L[W]
-- USING THE NOTION OF SPECIAL PATHS (3) --

• We can divide the special paths from 𝑤𝑤 into three groups:

1. Group 1: The null path (reaching 𝒘𝒘)

2. Group 2: the paths made up of a single upward back edge from 𝒘𝒘

3. Group 3: the special paths that go down at least one tree edge before 
proceeding 

• Group 3 can be viewed as all non-null special paths from the children of 𝑤𝑤
• Even if we include the null paths (from the children of w) in group 3, that won’t 

change the value of L[w]

• Thus, the groups of special paths from 𝑤𝑤 can be restated as:
1. Group 1: The null path (reaching 𝒘𝒘)

2. Group 2: the paths made up of a single upward back edge from 𝒘𝒘

3. Group 3: the special paths from the children of 𝒘𝒘

CS 6212 Design and Analysis of Algorithms                                                                                    Graph Traversal Techniques

59



HOW TO COMPUTE L[W]
-- USING THE NOTION OF SPECIAL PATHS (4) --

• Using 𝐿𝐿 𝑤𝑤 = min{DFN[x] | x is reachable from 𝑤𝑤 by a special path}

and the three groups of special paths from w, we conclude: 
𝐿𝐿 𝑤𝑤 = min{ min{DFN[x] | x in Group 1} , min{DFN[x] |x in Group 2},

min{DFN[x] |x in Group 3} }

• min{DFN[x] |x in Group 1} = DFN[w]

• min{DFN[x] |x in Group 2} = min{DFN[x] | (w,x) is an upward back edge}

• For Group 3,  divide into subgroups, one subgroup per child v of w
• Therefore, the min from Group 3 is the min of mins of the subgroups

• But the min of a subgroup corresponding to a child v of w is L[v]

• We conclude:  min of Group 3  = min{L[v] | v is a child of w}

• Hence 

𝐿𝐿 𝑤𝑤 = min{𝑫𝑫𝑫𝑫𝑫𝑫 𝒘𝒘 ,min{DFN[x] | (w,x) is an upward back edge}, min{L[v] | v is a child of w} }
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CALCULATIONS OF L[W]
-- BOTTOM UP --

• The final formula we got for L[w] needs the L of its children

• So the L’s of the nodes have to be computed bottom up (i.e., from 
the leaves upward)

• Observe that if w is a leaf, its Group 3 is empty, and thus its 
𝐿𝐿 𝑤𝑤 = min{𝑫𝑫𝑫𝑫𝑫𝑫 𝒘𝒘 , min{DFN[x] | (w,x) is an upward back edge}}

• Therefore, for leaves, the computations of the L is relatively easy

• The computations of L is illustrated next
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ILLUSTRATIONS OF COMPUTING THE L’S
• L[6]=min{DFN[6], DFN[3]}=min{6,3}=3

• L[5]=min{ DFN[5], L[6]}=min{5,3}=3

• L[4]=min{DFN[4], L[6]}=min{4,3}=3

• L[8]=min{DFN[8],DFN[3]}=min{9,3}=3

• L[9]=min{DFN[9], L[8]}=min{8,3}=3

• L[7]=min{DFN[7], L[9]}=min{7,3}=3

• L[3]=min{DFN[3], DFN[1]

b/c (3,1) is a back edge,

min{L[4], L[7]}} 

= min{3,1,3,3}=1

• Etc.
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ILLUSTRATION OF IDENTIFYING THE AP’S
• Do a DFS, & compute the DFN and L of all the nodes

• Apply the AP criterion at every node

x is an articulation point iff

x has a child 𝑤𝑤 where 𝐿𝐿 𝑤𝑤 ≥ 𝐷𝐷𝐷𝐷𝐷𝐷[𝑥𝑥]

• 3 has a child 4 where L[4] ≥DFN[3],

i.e., 3 ≥3, thus 3 is AP

• 13 has a child 15 where L[15] ≥DFN[13],

i.e., 12 ≥12, thus 13 is AP

• 2 has a child 10 where L[10] ≥DFN[2],

i.e., 2 ≥2, thus 2 is AP

• The AP criterion is not satisfied at any 

other node

• Therefore, the APs are: 2, 3, 13
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DFS-BASED ALGORITHM FOR ARTICULATION POINTS
-- THE ADDED PIECES OF CODE ARE HIGHLIGHTED --
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Procedure DFS(input: graph G) // for articulation points
begin

Stack S;
int x, y, v; 
int DFN[1:n], L[1:n], Parent[1:n], num := 1; 
v := an unvisited node; // a starting node
visit(v); push(v,S);
DFN[v] := num; num++; L[v] := DFN[v];
while (S is not empty) do

x := top(S);  // current node
if (x has an unvisited neighbor y) then

visit(y); push(y,S);
DFN[y] := num; num++; Parent[y] := x;
L[y] := DFN[y];

else
pop(S); // backtrack to previous node

endif
endwhile

end

for (every neighbor y of x) do
if (y != parent[x] and DFN[y] < DFN[x]) 
then

// y is an ancestor of x, and 
// (x,y) is a back edge
L[x] := min(L[x],DFN[y]);

else
if (x = Parent[y]) then

L[x] : min(L[x],L[y]);
if (L[y] >= DFN[x] && x not 
root) then

x is an articulation point;
endif

endif
endif

endfor

if (v has more than one child) then
v is an articulation point;

endif



BICONNECTIVITY
-- TIME COMPLEXITY --

• The new statements add constant-time operations except for the 
new for loop at the time of backtracking

• This new for-loop crosses the edges one more time to update the L 
values and check for articulation points

• This increases the time by another O(|𝐸𝐸|)

• The final if-statement, to check for the status of the root, can be 
done by scanning the Parent array to count the number of children 
of the root v

• By counting the number of nodes whose Parent is v)
• It takes O(𝑛𝑛) = O(|𝐸𝐸|) time (b/c G is connected, and so 𝐸𝐸 ≥ 𝑛𝑛 − 1 )

• Therefore, the time complexity of the whole algorithm is O(|𝐸𝐸|). 
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LESSONS LEARNED SO FAR
• Tree traversal techniques are simple, recursive, and linear in time

• Sorting a BST is done by applying inorder traversal on it

• Depth-First Search (DFS) and Breadth-First Search (BFS) are generic graph traversal techniques that 
take linear time (i.e., O(|E|+|V|)), and are easily implemented using stacks and queues, respectively

• DFS and BFS have many applications, especially in connectivity, and yield faster algorithm for the MST 
problem when the edges have the same weight

• BFS yields faster algorithms for the shortest paths problems when the edges have the same weight

• DFS results in a new layout of graphs (tree edges and back edges) that is more illuminating about the 
underlying structure of the graph than any random layout

• Clever use of DFS and its illuminating layout of graphs enable the derivation of very efficient, 
sophisticated algorithms for advanced connectivity problems (e.g., biconnectivity and articulation 
points)

• Quantification of symbolic/geometric notions, wherever possible, leads to elegant and/or efficient 
algorithms
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OTHER APPLICATIONS OF GRAPH TRAVERSAL

• Planarity testing

• A graph is said to be planar if it can be laid out in such a way that no 
two edges cross at non-nodes

• DFS has been used to derive an efficient algorithm for planarity 
testing

• K-connectivity: this is a generalization of biconnectivity: a graph is 
K-connected if the simultaneous removal of any K-1 nodes leaves 
the graph connected

• DFS has been used to derive an efficient algorithm for testing if an 
input graph is K-connected
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OTHER GRAPH TRAVERSAL PROBLEMS
-- OPTIONAL --

• Modify DFS and DFS to apply to directed graphs

• Recall strong connectivity of directed graphs (a digraph is strongly 
connected if every node is reachable by path from a every other node)

• Write a directed-DFS algorithm to check if a digraph is strongly connected

• An edge in an undirected graph is called a bridge if the removal of the 
edge (but not its nodes) disconnects the graph.

• Develop a DFS-based algorithm to identify all the bridges in an input graph 
(Hint: use the notion of L and DFN, and derive a bridge criterion similar to 
the AP criterion)
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