
CS 6212 DESIGN AND
ANALYSIS OF
ALGORITHMS

LECTURE: GRAPH TRAVERSAL
TECHNIQUES

Instructor: Abdou Youssef

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

1

OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

• Describe and apply two graph traversal techniques, namely, Depth-First
Search (DFS) and Breadth-First Search (BFS), as well as three tree traversal
techniques. Namely, inorder, preoder and postorder traversal

• Apply DFS and BFS to solve some standard graph problems, including
connectivity, and special cases of shortest paths and minimum spanning
trees

• Apply DFS to check for biconnectivity and identify articulation points

• Use the concepts and insights gained in this lecture to develop new graph
algorithms for some interesting problems

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

2

OUTLINE

By the end of this lecture, you will be able to:

• Definition of graph traversal

• Tree traversal techniques and some quick applications

• Depth-first search: technique, implementation, and
applications

• Breadth-first search: technique, implementation, and
applications

• Biconnectivity application of depth-first search

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

3

INTRODUCTION
• A graph search (or traversal) technique visits all the nodes in an input graph in a

systematic fashion
• The nodes are visited in some particular order
• No node is visited multiple times (but it can be crossed multiple times), and no node is left

out

• Two standard graph search techniques have been widely used:
• Depth-First Search (DFS)
• Breadth-First Search (BFS)

• In the case of rooted binary trees, 3 traversal techniques are widely used:
(1) Inorder Traversal (2) Preorder Traversal (3) Postorder Traversal

• The tree traversal techniques will be reviewed very briefly

• BFS and DFS will be covered in detail, and applications given

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

4

TREE TRAVERSAL TECHNIQUES

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

5

Procedure inorder(input: T)
begin

if T = null then: return; endif

// traverse the left subtree
// recursively
inorder(T.left);

// visit/process the root
visit(T);

// traverse the right subtree
// recursively
inorder(T.right);

end
// Also called LNR traversal

Time: T(n) = O(n)
because every node in the tree is
processed/crossed just once

Procedure preorder(input: T)
begin

if T = null then: return; endif

// visit/process the root
visit(T);

// traverse the left subtree
// recursively
preorder(T.left);

// traverse the right subtree
// recursively
preorder(T.right);

end
// Also called NLR traversal

Time: T(n) = O(n)
because every node in the tree is
processed/crossed just once

Procedure postorder (input: T)
begin

if T = null then: return; endif

// traverse the left subtree
// recursively
postorder(T.left);

// traverse the right subtree
// recursively
postorder(T.right);

// visit/process the root
visit(T);

end
// Also called LRN traversal

Time: T(n) = O(n)
because every node in the tree is
processed/crossed just once

ILLUSTRATION OF THE THREE
TREE TRAVERSAL TECHNIQUES

• Inorder: 4, 2, 11, 8, 12, 5, 9, 1, 6, 3, 7, 13 10

• Preorder: 1, 2, 4, 5, 8, 11, 12, 9, 3, 6, 7, 10, 13

• Postorder: 4, 11, 12, 8, 9, 8, 2, 6, 13, 10, 7, 3, 1

CS 6212 Design and Analysis of Algorithms
Graph Traversal Techniques 6

1

3

8

54

2

1211

76

9

13

10

APPLICATIONS OF TREE TRAVERSAL
TECHNIQUES

• Compiling (and evaluating) arithmetic expressions:

• Infix notation: inorder traversal

• Prefix notation: preorder traversal

• Postfix notation: postorder traversal

• We will not say more about the compiler applications, but you can
read about them by following the links if you wish

• Sorting a Binary Search Tree

• If apply inorder traversal on a BST, the data of the tree get sorted

• Thus, sorting a BST takes O(n) time

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

7

https://en.wikipedia.org/wiki/Infix_notation
https://en.wikipedia.org/wiki/Polish_notation
https://en.wikipedia.org/wiki/Reverse_Polish_notation

LESSONS LEARNED SO FAR

• Tree traversal techniques are simple, recursive, and linear in
time

• Sorting a BST is done by applying inorder traversal on it

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

8

EXERCISES

• Can two different binary trees yield the same inorder traversal
sequence? The same preorder traversal sequence? The same
postorder traversal sequence? Prove your answer

• Write a recursive algorithm that takes as input of the postorder
traversal sequence and the in-order traversal sequence of a binary
tree, and derives as output the actual binary tree

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

9

DEPTH-FIRST SEARCH (DFS)

DFS follows these steps/rules:

1. Select an unvisited node s, visit it, and treat as the current node

2. Find an unvisited neighbor of the current node, visit it, and
make it the new current node;

3. If the current node has no unvisited neighbors, backtrack to its
parent, and make that the new current node;

4. Repeat the above two steps until no more nodes can be visited;

5. If there are still unvisited nodes, repeat from step 1;

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

10

Better to illustrate on an example, next

DFS ILLUSTRATION
• Graph G: • DFS(G,1):

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

11

9

1

23

7

4

5

6 8
1110

1312 14

1615

1

2

3

4

5

6

7

9

8

10

11

13

14 15

16

12

Break ties by
selecting the
smallest unvisited
neighbor

DFS IMPLEMENTATION
-- WHY --

• Remark: whenever we got stuck, we backtracked to where we
came from. How?

• Using our human eyes!

• Algorithms don’t have eyes (usually)

• Observe that the last node you came from is the first node you go
back to

• This suggests a stack to remember the order in which to
backtrack to nodes

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

12

DFS IMPLEMENTATION
-- ILLUSTRATION: USING STACKS --

• Graph G: • DFS(G,1):

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

13

9

1

23

7

4

5

6 8
1110

1312 14

1615

1

2

3

4

5

6

7

9

8

10

11

13

14 15

16

12• When you visit a node: push it onto stack
• The node to backtrack to: top of stack
• When you backtrack from a node: pop it
• When stack is empty, current DFS round is

done
1

2

3

4

5

6

7

9

8

10

11

13

12

14

15

16

DFS IMPLEMENTATION
-- CODE: USING STACKS--

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

14

Procedure DFS(input: graph G)
begin

Stack S;
int x, y, v;
while (G has an unvisited node) do

// pick one of them; break tie by picking min
v := an unvisited node; // a starting node
visit(v); push(v,S);
while (S is not empty) do

x := top(S); // current node
if (x has an unvisited neighbor y) then

visit(y); // break tie, e.g., pick min
push(y,S);

else
pop(S); // backtrack to previous node

endif
endwhile

endwhile
end

Time complexity:
• Every node is visited once, but

could be crossed multiple times
(by backtracking to it multiple
times).

• So the number of nodes is not a
good indicator of time

• But ever edge in G is “traversed”
at most twice:

• One time to go from a node to
a “child”

• And another time to
backtrack from a child to a
parent

• Note that once you backtracked
from a node, you never come
back to it

• Therefore, the time is O(|E|+n)

OBSERVATIONS
-- DFS ON CONNECTED GRAPHS: DFS TREE --

• When you do a DFS on a graph, and you draw a copy of a node
when you visit it, and you draw an edge to a every new node you
visit from your current node, you end up with a tree

• That tree is called a depth-first search tree (or simply DFT)

• If the graph G is connected (i.e., there is at least one path between
every pair of nodes), then:

• Doing a DFS on G from any arbitrary starting node will visit all the
nodes in G

• The DFT tree is a spanning tree of G

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

15

DFS ON CONNECTED GRAPHS
-- YIELDING A DFT --

• Graph G: • DFS(G,1):

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

16

9

1

23

7

4

5

6 8
1110

1312 14

1615

1

2

3

4

5

6

7

9

8

10

11

13

14 15

16

12

DFS yields a
depth-first search
tree (DFT), a
spanning tree

OBSERVATIONS
-- DFS ON DISCONNECTED GRAPHS: DFS FOREST --

• If G is not connected, it is made up of “islands”, called

connected components (CC)

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

17

9

1

23

7

4

5

6 8
1110

1312 14

1615

1

2

3

4

5

6

7

9

8

10

11

13

14 15

16

12

One CC

Another CC

DFS on 1st CC

DFS on 2nd CC

DFS APPLICATIONS
-- CONNECTIVITY --

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

18

Procedure DFS(input: graph G)
begin

Stack S;
int x, y, v;
int count=0; // number of connected components
while (G has an unvisited node) do

v := an unvisited node; // a starting node
visit(v); push(v,S);
while (S is not empty) do

x := top(S); // current node
if (x has an unvisited neighbor y) then

visit(y); push(y,S);
else

pop(S); // backtrack to previous node
endif

endwhile
count++;

endwhile
end

• This traverses one full
connected component

• If we keep track of the
nodes visited in this
round, we’ll have the
entire CC

Iterates as many times as
there are CCs in G

At the end, “count” will have
the number of CC’s in G

• If count==1, then G is connected
• If count> 1, then G is disconnected

WHY IS CONNECTIVITY CHECKING IMPORTANT

• Ability to communicate with everyone
• Our world is full of networks: computer networks, communication networks,

etc.
• Nodes in such networks communicate with one another very often
• If the network is connected, that means every node can communicate with

other nodes
• Otherwise, some nodes are disconnected from other nodes

• Many graph applications work on connected graphs/components
• Therefore, in those applications, the first step is to check if the input graph

is connected
• If G is not connected, the connected components are found first, and the

application is then run on each CC separately

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

19

OTHER APPLICATIONS OF DFS

• Checking if an input graph G is a tree. How?

• Identification of which edges can be deleted while keeping the
network connected (e.g., for cost saving measures)

• Minimum Spanning Trees when all edges have the same weight
• If all edge weights are equal to 𝑤𝑤, then all spanning trees are of

weight (𝑛𝑛 − 1)𝑤𝑤, and so all of them are MSTs

• The DFT is then a MST, and can be found in O(|E|+𝑛𝑛) time, which can
be much less in the greedy 𝑂𝑂(𝐸𝐸 log |𝐸𝐸|) time

• Finding single points of failure, i.e., individual nodes/edges
whose removal disconnect the graph (more on that later)

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

20

LESSONS LEARNED SO FAR

• Tree traversal techniques are simple, recursive, and linear in
time

• Sorting a BST is done by applying inorder traversal on it

• Depth-first search is a generic graph traversal technique that
takes linear time (i.e., O(|E|+|V|)), and is easily
implemented using stacks

• DFS has many applications, especially in connectivity, and
yields a faster algorithm for the MST problem when the edges
have the same weight

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

21

EXERCISES

• Give a recursive version of the DFS algorithm, which does not
explicitly use a stack

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

22

BREADTH-FIRST SEARCH (BFS)

DFS follows these steps/rules:
1. Select an unvisited node s, visit it, and treat as the current node (and

the root of a BSF tree). Its level is called the current level.

2. From each node x in the current level, in the order in which the level
nodes were visited, visit all the unvisited neighbors of x. The newly
visited nodes from this level form a new level that becomes the next
current level.

3. Repeat the previous step until no more nodes can be visited.

4. If there are still unvisited nodes, repeat from Step 1.

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

23

Better to illustrate on an example, next

BFS ILLUSTRATION
• Graph G: • BFS(G,1):

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

24

9

1

23

7

4

5

6 8
1110

1312 14

1615

1

2 3

Break ties by
visiting the
neighbors in
sorted order

10 11 4 6 7 8

1312 14 5 9

1615

BFS ON DISCONNECTED GRAPHS

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

25

9

1

23

7

4

5

6 8
1110

1312 14

1615

One CC

Another CC

BFS on 1st CC

DFS on 2nd CC

1

2 3

4 6 7 8

5 9 10

15 16

11 1312

14

OBSERVATIONS
-- BFS: BFS TREE OR FOREST--

• Like in DFS, when you do a BFS on a graph,

• you get a tree if the graph is connected, called Breadth-first search
tree (or simply BFT)

• If the graph is disconnected, you get a forest (one tree per
connected component), called Breadth-first search forest

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

26

BFS IMPLEMENTATION
-- WHY --

• Remarks:

• The nodes in each “current” level are “expanded” from left to right, i.e., in
the order in which they were initially visited: first-visit, first-expand

• Whenever a level is completed, we moved to the next level

• How did we follow the right order, and how did we find the next level?

• Again, using our human eyes!

• And again, algorithms don’t have eyes (usually)

• The first-visit, first-expand observation above suggests a queue to
remember the order in which to expand the (already visited)
nodes

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

27

Expand a node x: visit its unvisited neighbors

BFS IMPLEMENTATION
-- ILLUSTRATION: USING QUEUES--

• Graph G: • BFS(G,1):

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

28

9

1

23

7

4

5

6 8
1110

1312 14

1615

• When you visit a node, add it to the queue
• Next current node is head of the queue: get it and remove it from queue
• Stop when queue is empty

12345 679 8 101113 1214

1

2 3

10 11 4 6 7 8

1312 14 5 9

1615

1516

BFS IMPLEMENTATION
-- CODE: USING QUEUES-

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

29

Procedure BFS(input: graph G)
begin

Queue Q;
int x, y, v;
while (G has an unvisited node) do

// pick one of them; break tie by picking min
v := an unvisited node; // a starting node
visit(v); enqueuer(v,Q);
while (Q is not empty) do

x := dequeue(Q); // current node
for each unvisited neighbor y of do

visit(y); // visit neighbors as sorted
enqueue(y,W);

endfor
endwhile

endwhile
end

Time complexity:
• Every node is visited once, but

could be “touched” multiple times
(to check if visited).

• So the number of nodes is not a
good indicator of time

• But ever edge (x,y) in G is
“traversed” twice:

• Once to visit y from x
• Another time from y to see if

x has been visited
• Once x is expanded, edge from x

to y is never crossed, b/c x is “left
behind”

• Also once y is expanded, edge
from y to x is never crossed

• Therefore, the time is O(|E|+n)

Procedure BFS(input: graph G)
begin

Queue Q;
int x, y, v;
int count=0; // number of connected components
while (G has an unvisited node) do

// pick one of them; break tie by picking min
v := an unvisited node; // a starting node
visit(v); enqueuer(v,Q);
while (Q is not empty) do

x := dequeue(Q); // current node
for each unvisited neighbor y of do

visit(y); // visit neighbors as sorted
enqueue(y,Q);

endfor
endwhile
count++;

endwhile
end

DFS APPLICATIONS
-- CONNECTIVITY (MUCH LIKE DFS) --

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

30

• This traverses one full
connected component

• If we keep track of the
nodes visited in this
round, we’ll have the
entire CC

Iterates as many times as
there are CCs in G

At the end, “count” will have
the number of CC’s in G

• If count==1, then G is connected
• If count> 1, then G is disconnected

OTHER APPLICATIONS OF BFS

• Checking if an input graph G is a tree. How?

• Identification of which edges can be deleted while keeping the
network connected (e.g., for cost saving measures)

• MSTs when all edges have the same weight: a BFT is a MST, and
can be found in O(|E|+𝑛𝑛) time, which is < the greedy 𝑂𝑂(𝐸𝐸 log |𝐸𝐸|)

• Reducing bandwidths in sparse matrices, etc. (beyond our scope)

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

31

OTHER APPLICATIONS OF BFS
-- SHORTEST PATHS WHEN ALL EDGES HAVE SAME WEIGHT (1) --

• Assume all the edges have the same weight (say 1) in a graph G

• Theorem: The BFS paths from the root to all the nodes are shortest paths

• Proof:
• Label the levels of the BFT 0, 1, 2, …, top to bottom.

• Prove by induction the level 𝑙𝑙 that all nodes in level 𝑙𝑙 are of distance 𝑙𝑙 from the root,
and that all nodes of distance 𝑙𝑙 from the root are in level 𝑙𝑙.

• The rest of the proof is an exercise

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

32

SHORTEST PATHS FROM ROOT IN BFT
• Graph G: • BFS(G,1):

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

33

9

1

23

7

4

5

6 8
1110

1312 14

1615

1

2 3

10 11 4 6 7 8

1312 14 5 9

1516

OTHER APPLICATIONS OF BFS
-- SHORTEST PATHS WHEN ALL EDGES HAVE SAME WEIGHT (2) --

• Assume all the edges have the same weight (say 1) in a graph G

• Theorem: The BFS paths from the root to all the nodes are shortest paths

• Proof:
• Label the levels of the BFT 0, 1, 2, …, top to bottom.

• Prove by induction the level 𝑙𝑙 that all nodes in level 𝑙𝑙 are of distance 𝑙𝑙 from the root,
and that all nodes of distance 𝑙𝑙 from the root are in level 𝑙𝑙.

• The rest of the proof is an exercise

• Time to do since-source shortest paths (when edges have same weight):
O(|E|), which is faster than the greedy 𝑂𝑂(𝑛𝑛2) time

• Time to do all-pairs shortest paths (when edges have same weight), by
calling BFS n times, one time from each node: O(𝑛𝑛|𝐸𝐸|) < 𝑂𝑂(𝑛𝑛3) DP time

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

34

LESSONS LEARNED SO FAR

• Tree traversal techniques are simple, recursive, and linear in time

• Sorting a BST is done by applying inorder traversal on it

• Depth-First Search (DFS) and Breadth-First Search (BFS) are
generic graph traversal techniques that take linear time (i.e.,
O(|E|+|V|)), and are easily implemented using stacks and
queues, respectively

• DFS and BFS have many applications, especially in connectivity,
and yield faster algorithms for the MST problem when the edges
have the same weight

• BFS yields faster algorithms for the shortest paths problems when
the edges have the same weight

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

35

BICONNECTIVITY
-- A MAJOR APPLICATION OF DFS --

• Definition: A node in a connected graph is called an
articulation point (A.P.) if the deletion of that node (and all
the edges incident to it) disconnects the graph.

• Definition: A connected graph is called biconnected if it has
no articulation points. That is, the deletion of any single node
leaves the graph connected.

• In the case of networks, an articulation point is referred to as a
single point of failure.

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

36

ILLUSTRATION OF ARTICULATION POINTS (1)
• Graph G:

• G is not biconnected

• Nodes 2, 3, and 13 are articulation points

• Observe what happens if we delete node 2:

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

37

9

1

23

7

4

5

6 8
1110

1312 14

1615

9

1

3

7

4

5

6 8
1110

1312 14

1615

It disconnects
and breaks
into two CCs

• Observe what happens if we delete node 3:

ILLUSTRATION OF ARTICULATION POINTS (3)
• Graph G:

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

38

9

1

23

7

4

5

6 8
1110

1312 14

1615

G disconnects
and breaks
into three CCs

9

1

2

7

4

5

6 8
1110

1312 14

1615

ILLUSTRATION OF NON-ARTICULATION POINTS
• Graph G:

• G is not biconnected

• Nodes 2, 3, and 13 are articulation points

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

39

9

1

23

7

4

5

6 8
1110

1312 14

1615

• After deleting node 1, G remains connected
• Hence, node 1 is not an A.P.

9

23

7

4

5

6 8
1110

1312 14

1615

BICONNECTIVITY
-- AN EXAMPLE OF A BICONNECTED GRAPH --

• The following graph is biconnected: it has no A.P.’s

• Note that by adding some edges

(the red ones) to the

previous graph, it became

biconnected

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

40

9

1

23

7

4

5

6 8
1110

1312 14

1615

A BICONNECTIVITY THEOREM
• Definition: In a graph G, two paths between a pair of

nodes x and y are said to be disjoint if they don’t
have any nodes in common except the end-points x
and y

• Theorem: A graph G is biconnected if and only if
between every pair of nodes x and y in G there is at
least two disjoint paths

• Proof: Will not be covered in this course.

• The black and green paths [2 → 11 → 14] and [1 →
10 → 13 → 14] between 2 and 14 are disjoint

• The red and brown paths [5 → 4 → 3 → 8 → 8] and [5
→ 6 → 3 → 7→ 9] between 5 and 9 are not disjoint
(they share node 3)CS 6212 Design and Analysis of Algorithms

Graph Traversal Techniques 41

9

1

23

7

4

5

6 8
1110

1312 14

1615

THE BICONNECTIVITY PROBLEM

• Input: a connected graph G

• Output: Whether or not the graph G is biconnected and, if not
biconnected, find all the articulation points

• Task: Write an algorithm for solving this problem, using a
graph traversal technique

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

42

BICONNECTIVITY
-- DFS: NEW LAYOUT OF THE GRAPH --

• DFS on a connected graph G yields a DFS tree whose edges
are from the graph.

• Draw those edges as solid edges.

• Add the remaining edges of the graph as dashed edges in the
tree.

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

43

DFS-LAYOUT OF A GRAPH
• Graph G: • DFS-layout

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

44

9

1

23

7

4

5

6 8
1110

1312 14

1615

1

2

3

4

5

6

7

9

8

10

11

13

14 15

16

12

This is the same graph G (same
nodes and edges), laid out
differently, with the use of DFS

So we can focus on
this layout for
connectivity
questions

OBSERVATIONS ABOUT THE DASHED EDGES
• Graph G: • DFS-layout

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

45

9

1

23

7

4

5

6 8
1110

1312 14

1615

1

2

3

4

5

6

7

9

8

10

11

13

14 15

16

12

Ever dashed edge is between
descendant and ancestor

Thus, dashed edge
are called backward
(or back) edges

BACKWARD EDGES IN DFS
-- A THEOREM --

• Theorem: Each dashed edge in a DFS layout goes from
a descendant to an ancestor.

• Proof: The proof is by contradiction.
• Take a graph G and do a DFS on it

• Let (x,y) be a dashed edge between nodes that are not
ancestor-descendant, that is, x and y are in separate
subtrees of the DFS tree. Assume x was visited before y.

• Let t be the time DFS backtracks from x: no unvisited
neighbors of x remain, and DFS will not return to x again

• Since x is visited before y and y is not a descendant of x,
y has not been visited at time t.

• But since y is a neighbor of x and y is not visited at time t,
y would have to be visited from x before the algorithm
backtracks from x.

• That would make y a descendant of x. Contradiction.

• Therefore, no such cross edge (x,y) can exist in a DFS
tree. Q.E.D.

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

46

x

y

LESSONS LEARNED SO FAR

• Tree traversal techniques are simple, recursive, and linear in time

• Sorting a BST is done by applying inorder traversal on it

• Depth-First Search (DFS) and Breadth-First Search (BFS) are generic graph
traversal techniques that take linear time (i.e., O(|E|+|V|)), and are easily
implemented using stacks and queues, respectively

• DFS and BFS have many applications, especially in connectivity, and yield
faster algorithms for the MST problem when the edges have the same weight

• BFS yields faster algorithms for the shortest paths problems when the edges
have the same weight

• DFS results in a new layout of graphs (tree edges and back edges) that is more
illuminating about the underlying structure of the graph than any random
layout

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

47

OBSERVATIONS ABOUT THE ROOT OF
THE DFT

• Theorem: If the root has more than one
child, then the root is an articulation point.
But if the root has a single child, it is not an
articulation point.

• Proof:
• Case 1: the root has multiple children

• the removal of the root makes the subtrees
of that root disconnected from one another
since there are no cross dashed edges
between them. (see top half of figure)

• Case 2: the root has one child
• its removal leaves the remaining n-1 nodes

connected by at least the (only) subtree of
the root. Q.E.D.

CS 6212 Design and Analysis of Algorithms
Graph Traversal Techniques 48

After removal of root:

The graph gets
disconnected for
lack of cross edges

After removal of root:

The graph remains connected

DFS layout:

DFS layout:

CAN THIS LEAD TO AN ALGORITHM FOR
FINDING ALL AP’S?

• The previous theorem suggests a first algorithm for
identifying articulation points:

• For each node x in G, do a DFS from x, and check if x more than
one child. If so, x is an a.p.

• This algorithm, however, takes 𝑶𝑶(𝒏𝒏 |𝑬𝑬|) time (b/c it calls DFS n
times)

• Can we do better?

• A better algorithm will be designed that takes only O(|E|)
time, performing only one DFS instead of n DFSs

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

49

TESTABLE CRITERION FOR A NON-ROOT TO BE A.P.

• Notation: Let 𝒘𝒘-tree denote the
subtree rooted at w in a DFT

• Necessary and sufficient condition
for a non-root to be an A.P.:

• A non-root node x is an
articulation point if and only if x
has a subtree (w-tree) such that
every back edge that originates
from that substree ends at x or at
w or at a descendant of w

• Why? Observe in the figure how when x
is removed, the w-tree is diconnected
from the rest of the graph

CS 6212 Design and Analysis of Algorithms
Graph Traversal Techniques 50

No back edge from the
w-tree reaches above x.
And no cross edges
connecting the w-tree
to the graph side-waysx

wvu

wvu

After
removing x

REFINING THE CRITERION FOR
A NON-ROOT TO BE A.P.

• Let 𝐿𝐿[𝑤𝑤] ≝ the highest node reachable (from the 𝑤𝑤-tree by a

back edge) or (from 𝑤𝑤 by a null path)

• The AP criterion on the previous slide “x has a subtree (w-tree)
such that every back edge that originates from that substree
ends at x or at w or at a descendant of w”

becomes:

“x is an articulation point iff x has a child 𝑤𝑤 where L[𝑤𝑤] is x or w or a
descendant of w”

• We will turn this “visual/geometric” criterion into a numerical criterion

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

51

QUANTIFYING THE AP CRITERION
-- RELABELING THE NODES TO CAPTURE GEOMETRY (1) --

• The nodes of the graph will be relabeled so that the new
labels carry meaningful information.

• Indeed, each node 𝑖𝑖 will have two new labels: 𝐷𝐷𝐷𝐷𝐷𝐷[𝑖𝑖] and 𝐿𝐿[𝑖𝑖].

• Let 𝑫𝑫𝑫𝑫𝑫𝑫[𝒊𝒊] ≝ the time at which 𝒊𝒊 is visited in DFS. Thus, the
1st node visited (the root) has its DFN = 1. The 2nd node visited
has a DFN = 2, etc.

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

52

ILLUSTRATION OF DFN RELABELING
• Graph G:

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

53

9

1

23

7

4

5

6 8
1110

1312 14

1615

1

2

3

4

5

6

7

9

8

10

11

13

14 15

16

12

1

2

3

4

5

6

7

8

9

10

12

11

1413
15

16

DFS with DFN labels inside green boxes:

QUANTIFYING THE AP CRITERION
-- RELABELING THE NODES TO CAPTURE GEOMETRY (2) --

• Recall 𝐿𝐿[𝑤𝑤] ≝ the highest node reachable (from the 𝑤𝑤-tree by a

back edge) or (from 𝑤𝑤 by a null path)

• Express 𝑳𝑳[𝒘𝒘] in terms of DFN:

𝑳𝑳[𝒘𝒘] ≝ the DFN of [the highest node reachable (from the w-tree

by a back edge) or (from w by a null path)]

• The AP criterion “x is an articulation point iff x has a child 𝑤𝑤 where
L[𝑤𝑤] is x or 𝑤𝑤 or a descendant of 𝑤𝑤” becomes:

“x is an articulation point iff x has a child 𝑤𝑤 where L[𝑤𝑤] is DFN[x] or
DFN[𝑤𝑤] or DFN[a descendant of 𝑤𝑤]”

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

54

QUANTIFYING THE AP CRITERION
-- IN TERMS OF L AND DFN --

• Observe that

• the ancestors of 𝑤𝑤 have DFN’s ≤ DFN[𝑤𝑤]
• The descendants of w have DFN’s ≥ DFN[𝑤𝑤]

• The AP criterion becomes “x is an articulation point iff x has a
child 𝑤𝑤 where L[𝑤𝑤] is DFN[x] or DFN[w] or DFN[a descendant of
w]” becomes

x is an articulation point iff x has a child 𝑤𝑤 where 𝐿𝐿 𝑤𝑤 ≥ 𝐷𝐷𝐷𝐷𝐷𝐷[𝑥𝑥]

• Therefore, if we can compute the DFN’s and L’s of all the nodes, we can
apply that criterion at every node x to identify the articulation points

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

55

HOW TO COMPUTE L[W]
-- USING THE NOTION OF SPECIAL PATHS (1) --

• For convenience, we’ll define the notion of “special path”

• A special path from a node 𝑤𝑤 is

• the null path from 𝑤𝑤 to itself, or

• A path that goes from 𝑤𝑤 downward zero or more

tree edges, and ends with one upward back edge

• Therefore, every node reachable from the 𝑤𝑤-tree with a back edge
is reachable from w with a special path

• This observation will help us state L[𝑤𝑤] in terms of special paths

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

56

x

wvu

ILLUSTRATION OF SPECIAL PATHS
• Special paths from node 11:

• Null path 11

• Path 11 → 2 (one upward back edge)

• 11 → 13 → 12 →10: it went down tree
edges from 11 to 13 to 12, and finally
up a back edge to 10

• 11 → 13→ 14→11

• 11 →13 →15→16→13

• The highest node reachable by any of
those special paths from 11 is node 2

• DFN[2]=2 (see a couple of slides ago)

• Therefore, L[11]=2

• DFS-layout

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

57

1

2

3

4

5

6

7

9

8

10

11

13

14 15

16

12

HOW TO COMPUTE L[W]
-- USING THE NOTION OF SPECIAL PATHS (2) --

1. Recall 𝐿𝐿[𝑤𝑤] ≝ the DFN of the highest node reachable from the 𝑤𝑤 -tree
by a back edge or from w by a null path

2. It can be easily seen that

𝑳𝑳 𝒘𝒘 = the DFN of the highest node reachable from 𝒘𝒘 by a special path

3. Observe that the highest node reachable from 𝑤𝑤 by a special path is
either w itself or a proper ancestor of 𝑤𝑤. Either way, it is an ancestor of
𝑤𝑤.

4. Observe also that in the set of ancestors of 𝑤𝑤, the higher
(geometrically) an ancestor is, the smaller its DFN

5. By the last 3 points, we conclude that

𝑳𝑳 𝒘𝒘 = min{DFN[x] | x is reachable from 𝒘𝒘 by a special path}

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

58

HOW TO COMPUTE L[W]
-- USING THE NOTION OF SPECIAL PATHS (3) --

• We can divide the special paths from 𝑤𝑤 into three groups:

1. Group 1: The null path (reaching 𝒘𝒘)

2. Group 2: the paths made up of a single upward back edge from 𝒘𝒘

3. Group 3: the special paths that go down at least one tree edge before
proceeding

• Group 3 can be viewed as all non-null special paths from the children of 𝑤𝑤
• Even if we include the null paths (from the children of w) in group 3, that won’t

change the value of L[w]

• Thus, the groups of special paths from 𝑤𝑤 can be restated as:
1. Group 1: The null path (reaching 𝒘𝒘)

2. Group 2: the paths made up of a single upward back edge from 𝒘𝒘

3. Group 3: the special paths from the children of 𝒘𝒘

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

59

HOW TO COMPUTE L[W]
-- USING THE NOTION OF SPECIAL PATHS (4) --

• Using 𝐿𝐿 𝑤𝑤 = min{DFN[x] | x is reachable from 𝑤𝑤 by a special path}

and the three groups of special paths from w, we conclude:
𝐿𝐿 𝑤𝑤 = min{ min{DFN[x] | x in Group 1} , min{DFN[x] |x in Group 2},

min{DFN[x] |x in Group 3} }

• min{DFN[x] |x in Group 1} = DFN[w]

• min{DFN[x] |x in Group 2} = min{DFN[x] | (w,x) is an upward back edge}

• For Group 3, divide into subgroups, one subgroup per child v of w
• Therefore, the min from Group 3 is the min of mins of the subgroups

• But the min of a subgroup corresponding to a child v of w is L[v]

• We conclude: min of Group 3 = min{L[v] | v is a child of w}

• Hence

𝐿𝐿 𝑤𝑤 = min{𝑫𝑫𝑫𝑫𝑫𝑫 𝒘𝒘 ,min{DFN[x] | (w,x) is an upward back edge}, min{L[v] | v is a child of w} }

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

60

CALCULATIONS OF L[W]
-- BOTTOM UP --

• The final formula we got for L[w] needs the L of its children

• So the L’s of the nodes have to be computed bottom up (i.e., from
the leaves upward)

• Observe that if w is a leaf, its Group 3 is empty, and thus its
𝐿𝐿 𝑤𝑤 = min{𝑫𝑫𝑫𝑫𝑫𝑫 𝒘𝒘 , min{DFN[x] | (w,x) is an upward back edge}}

• Therefore, for leaves, the computations of the L is relatively easy

• The computations of L is illustrated next

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

61

ILLUSTRATIONS OF COMPUTING THE L’S
• L[6]=min{DFN[6], DFN[3]}=min{6,3}=3

• L[5]=min{ DFN[5], L[6]}=min{5,3}=3

• L[4]=min{DFN[4], L[6]}=min{4,3}=3

• L[8]=min{DFN[8],DFN[3]}=min{9,3}=3

• L[9]=min{DFN[9], L[8]}=min{8,3}=3

• L[7]=min{DFN[7], L[9]}=min{7,3}=3

• L[3]=min{DFN[3], DFN[1]

b/c (3,1) is a back edge,

min{L[4], L[7]}}

= min{3,1,3,3}=1

• Etc.

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

62

1

2

3

4

5

6

7

9

8

10

11

13

14 15

16

12

1

2

3

4

5

6

7

8

9

10

12

11

1413
15

16
3 3

3

3

3

3

1

1

1

10 11
12

12

10

2

Using the DFN labels in green squares, compute L labels inside black circles :

2

ILLUSTRATION OF IDENTIFYING THE AP’S
• Do a DFS, & compute the DFN and L of all the nodes

• Apply the AP criterion at every node

x is an articulation point iff

x has a child 𝑤𝑤 where 𝐿𝐿 𝑤𝑤 ≥ 𝐷𝐷𝐷𝐷𝐷𝐷[𝑥𝑥]

• 3 has a child 4 where L[4] ≥DFN[3],

i.e., 3 ≥3, thus 3 is AP

• 13 has a child 15 where L[15] ≥DFN[13],

i.e., 12 ≥12, thus 13 is AP

• 2 has a child 10 where L[10] ≥DFN[2],

i.e., 2 ≥2, thus 2 is AP

• The AP criterion is not satisfied at any

other node

• Therefore, the APs are: 2, 3, 13

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

63

1

2

3

4

5

6

7

9

8

10

11

13

14 15

16

12

1

2

3

4

5

6

7

8

9

10

12

11

1413
15

16
3 3

3

3

3

3

1

1

1

10 11
12

12

10

2

AP criterion: x is an articulation point iff x has a child 𝑤𝑤 where 𝐿𝐿 𝑤𝑤 ≥ 𝐷𝐷𝐷𝐷𝐷𝐷[𝑥𝑥]

2

• The DFN’s are in
green squares

• The L’s in black
circles

DFS-BASED ALGORITHM FOR ARTICULATION POINTS
-- THE ADDED PIECES OF CODE ARE HIGHLIGHTED --

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

64

Procedure DFS(input: graph G) // for articulation points
begin

Stack S;
int x, y, v;
int DFN[1:n], L[1:n], Parent[1:n], num := 1;
v := an unvisited node; // a starting node
visit(v); push(v,S);
DFN[v] := num; num++; L[v] := DFN[v];
while (S is not empty) do

x := top(S); // current node
if (x has an unvisited neighbor y) then

visit(y); push(y,S);
DFN[y] := num; num++; Parent[y] := x;
L[y] := DFN[y];

else
pop(S); // backtrack to previous node

endif
endwhile

end

for (every neighbor y of x) do
if (y != parent[x] and DFN[y] < DFN[x])
then

// y is an ancestor of x, and
// (x,y) is a back edge
L[x] := min(L[x],DFN[y]);

else
if (x = Parent[y]) then

L[x] : min(L[x],L[y]);
if (L[y] >= DFN[x] && x not
root) then

x is an articulation point;
endif

endif
endif

endfor

if (v has more than one child) then
v is an articulation point;

endif

BICONNECTIVITY
-- TIME COMPLEXITY --

• The new statements add constant-time operations except for the
new for loop at the time of backtracking

• This new for-loop crosses the edges one more time to update the L
values and check for articulation points

• This increases the time by another O(|𝐸𝐸|)

• The final if-statement, to check for the status of the root, can be
done by scanning the Parent array to count the number of children
of the root v

• By counting the number of nodes whose Parent is v)
• It takes O(𝑛𝑛) = O(|𝐸𝐸|) time (b/c G is connected, and so 𝐸𝐸 ≥ 𝑛𝑛 − 1)

• Therefore, the time complexity of the whole algorithm is O(|𝐸𝐸|).

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

65

LESSONS LEARNED SO FAR
• Tree traversal techniques are simple, recursive, and linear in time

• Sorting a BST is done by applying inorder traversal on it

• Depth-First Search (DFS) and Breadth-First Search (BFS) are generic graph traversal techniques that
take linear time (i.e., O(|E|+|V|)), and are easily implemented using stacks and queues, respectively

• DFS and BFS have many applications, especially in connectivity, and yield faster algorithm for the MST
problem when the edges have the same weight

• BFS yields faster algorithms for the shortest paths problems when the edges have the same weight

• DFS results in a new layout of graphs (tree edges and back edges) that is more illuminating about the
underlying structure of the graph than any random layout

• Clever use of DFS and its illuminating layout of graphs enable the derivation of very efficient,
sophisticated algorithms for advanced connectivity problems (e.g., biconnectivity and articulation
points)

• Quantification of symbolic/geometric notions, wherever possible, leads to elegant and/or efficient
algorithms

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

66

OTHER APPLICATIONS OF GRAPH TRAVERSAL

• Planarity testing

• A graph is said to be planar if it can be laid out in such a way that no
two edges cross at non-nodes

• DFS has been used to derive an efficient algorithm for planarity
testing

• K-connectivity: this is a generalization of biconnectivity: a graph is
K-connected if the simultaneous removal of any K-1 nodes leaves
the graph connected

• DFS has been used to derive an efficient algorithm for testing if an
input graph is K-connected

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

67

OTHER GRAPH TRAVERSAL PROBLEMS
-- OPTIONAL --

• Modify DFS and DFS to apply to directed graphs

• Recall strong connectivity of directed graphs (a digraph is strongly
connected if every node is reachable by path from a every other node)

• Write a directed-DFS algorithm to check if a digraph is strongly connected

• An edge in an undirected graph is called a bridge if the removal of the
edge (but not its nodes) disconnects the graph.

• Develop a DFS-based algorithm to identify all the bridges in an input graph
(Hint: use the notion of L and DFN, and derive a bridge criterion similar to
the AP criterion)

CS 6212 Design and Analysis of Algorithms Graph Traversal Techniques

68

	CS 6212 Design and Analysis of Algorithms��Lecture: graph traversal techniques
	Objectives of this Lecture
	outline
	Introduction
	Tree Traversal Techniques
	Illustration of the three�Tree Traversal Techniques
	Applications of Tree Traversal Techniques
	Lessons learned so far
	Exercises
	Depth-First Search (DFS)
	Dfs illustration
	DFS Implementation�-- Why --
	DFS Implementation�-- illustration: using stacks --
	DFS Implementation�-- code: using stacks--
	Observations�-- DFS on connected graphs: dfs tree --
	Dfs on connected graphs�-- yielding a dft --
	Observations�-- DFS on disconnected graphs: dfs forest --
	DFS applications�-- connectivity --
	Why is connectivity checking important
	Other applications of DFS
	Lessons learned so far
	Exercises
	breadth-First Search (BFS)
	Bfs illustration
	BFS on disconnected graphs
	Observations�-- BFS: Bfs tree or forest--
	BFS Implementation�-- Why --
	BFS Implementation�-- illustration: using queues--
	BFS Implementation�-- code: using queues-
	DFS applications�-- connectivity (much like dfs) --
	Other applications of BFS
	Other applications of BFS�-- shortest paths when all edges have same weight (1) --
	Shortest paths from root in BFT
	Other applications of BFS�-- shortest paths when all edges have same weight (2) --
	Lessons learned so far
	Biconnectivity�-- a major application of dfs --
	Illustration of articulation points (1)
	Illustration of articulation points (3)
	Illustration of non-articulation points
	Biconnectivity�-- an example of a biconnected graph --
	A Biconnectivity theorem
	The biconnectivity problem
	Biconnectivity�-- dfs: new layout of the graph --
	Dfs-layout of a graph
	Observations about the dashed edges
	Backward edges in dfs�-- a theorem --
	Lessons learned so far
	Observations about the root of the dfT
	Can this lead to an algorithm for finding all AP’s?
	testable criterion for a non-root to be A.P.
	Refining the criterion for �a non-root to be A.P.
	Quantifying the AP criterion �-- relabeling the nodes to capture geometry (1) --
	Illustration of dfn relabeling
	Quantifying the AP criterion �-- relabeling the nodes to capture geometry (2) --
	Quantifying the AP criterion �-- in terms of L and dfn --
	How to compute L[w]�-- using the notion of special paths (1) --
	Illustration of special paths
	How to compute L[w]�-- using the notion of special paths (2) --
	How to compute L[w]�-- using the notion of special paths (3) --
	How to compute L[w]�-- using the notion of special paths (4) --
	Calculations of L[w]�-- bottom up --
	Illustrations of computing the L’s
	Illustration of identifying the AP’s
	DFS-based algorithm for articulation points �-- the added pieces of code are highlighted --
	Biconnectivity�-- time complexity --
	Lessons learned so far
	Other applications of Graph Traversal
	Other Graph traversal problems�-- optional --

